

EXAMINATION MATERIAL OF ZUEB 2021-2022

GRADE: XII SUBJECT: PHYSICS

SECTION # A

MULTIPLE CHOICE QUESTIONS

СН	P # 11:		HEAT				
1.	The K.E of the mo	lecules of an ideal a	gas at absolute zero te c) Very high	mperature will be: d) Below Z	/ero		
2.	Choose the correct a) The product of b) The ratio of P	ct Statement: of P and T is constant and V is constant i	nt if the volume is cons f the temperature is co	stant Instant			
	•		ant if the temperature nt if the pressure kept				
3.	The internal energial Pressure	gy of a system depe b) Volume	ends on: c) Temperatur	e d) Entropy	,		
4.	The process durin a) Isothermal	g which no externa b) Isoch e	al work is performed as oric c) Isob	5:	Adiabatic		
5.			e corresponding the Ak c) –460°F	•			
6.	According to Char	les' Law:		,	D/M and the d		
7.	· · · · · · · · · · · · · · · · · · ·	at which centigrad	e scale is equal to Fahr	enheit scale:	P/V = constant		
8.	a) 0° According to the S	b) –32° Second Law of Ther	c) –40° rmodynamics 100 perc	d) −273° ent conversion of he	eat energy into work		
	is:a) Possibleb) Not possible						
	c) Possible when conditions are ideal						
9.	d) Possible when conditions are not ideal Which of the following statements is true:						
	a) Heat can be converted completely into workb) Work can be converted completely into heat						
	•	d heat are inter-co nor work is inter-co					
10.	In an Adiabatic ex a) remains the sar	•	al energy of the gas: eases c) incre	eases d)	becomes zero		
11.	•	s the work done is b) C _P /n∆T	•	d) nR∆T			

12.	The internal energy a) Increase	is an Isothermal pr b) decrease	rocess: c) become	s zero d) remains the same				
СН	CHP # 12: ELECTROSTATICS								
1.	 When three capacitors are joined in series, the total capacitance: a) Less than the value of the minimum capacitance b) Equal to the sum of the capacitance c) Greater than the maximum capacitance d) None of the above 								
2.	The Electric Intensit a) $\frac{\sigma}{\epsilon_o}$				0.031				
	a) 0.12 μF	b) 12 μF	onnected in para c) 0.34 μF	llel, their equiva d	alent capacitance will be:) 2.9 μF				
4.	The quantity ΔV_{Δ} a) Electric potential	5	c) Electric	Field Intensity					
5.	b) Potential Gradier The unit of electric i a) N C/m	nt	d) Electric						
	The Electric flux threa) 90°	b) 0 ° c)		nen the angle b 60°	etween E and A is:				
	a) Energy One ioule per coule	b) Force	c) Potentia	al Difference	d) Current				
	One joule per coulomb is called: a) Ampere b) Volt c) Farad d) Tesla The concept of the electric lines of force was introduced by a famous scientist called:								
٥.	a) Newton b) Einstein c) Coulomb d) Faraday								
10.	The number of elec		_	0.19	N 0 4 4 0 1 9				
11	a) 6 x 10 ²⁰ Which of the follow	b) 1.6 x 10 ¹⁸	c) 6.25 x 1	0 -5 a) 9.1 x 10 ¹⁹				
11.	a) Electrical Potenti	_	c) Electric	Flux d) Electric Intensity				
12.	The capacitance of a) area of the plat b) nature of the p c) distance between d) medium between	a parallel plate cap es lates en the plates	•		•				
СН	P # 13:	C	URRENT ELEC	CTRICITY					
1.	If the wire of a unifo	orm area of cross s	ection is cut into		s, the resistivity of each part				
2.	a) HalvedKilowatt hour is unita) Power	•	c) Electrica) NOTA d) Receptivity				
	a) FUWEI	b) Conductivity	c) Electrica	ai ciicigy	a) Neceptivity				

3.	Total potential difference across the combination of three cells becomes maximum when: a) All the three cells are connected in series.							
) All the three cells are connected in parallel.							
	c) Two cells are connected in series and the third cell in series with the combination.							
1	d) Two cells are connected in series and the third cell in series with the combination.							
4.	All electrical appliances are connected in parallel to each other between the main line and the							
	neutral wire to get: a) same current							
	b) same potential difference							
	c) different current and same potential differences							
_	d) none of the above							
5.	The terminal potential difference of a battery is equal to its e.m.f when its internal resistance is:							
_	a) Zero b) Very high c) Very low d) None of above							
6.	The rate of transfer of charge through a circuit is called:							
_	a) Resistance b) Current c) Potential difference d) Energy							
7.	One-Kilo-Watt-Hour is equal to a) $3.6 \times 10^5 \text{J}$ b) $36 \times 10^5 \text{J}$ c) $36 \times 10^6 \text{J}$ d) $3.6 \times 10^4 \text{J}$							
0	a) $3.6 \times 10^5 \text{J}$ b) $36 \times 10^5 \text{J}$ c) $36 \times 10^6 \text{J}$ d) $3.6 \times 10^4 \text{J}$ Ohm's law is obeyed in:							
٥.	a) electron tube b) semiconductor c) metallic conductor d) all of above							
9.	The power dissipated in a resistance is given by:							
٦.	a) IV b) V ² /R c) I ² R d) All of these							
10.	The commercial unit of electrical energy is:							
	a) joule b) kilowatt c) kilowatt hour d) mega watt							
11.	The resistance of 2Ω , 5Ω , 7Ω and 9Ω are connected in parallel. If the potential difference across the							
	5Ω resistance is 5V, the potential difference across 9Ω resistance will be:							
	a) 9 V b) 5 V c) 2.5 V d) 1.5 V							
12.	In a house circuit all the electrical appliances are connected in parallel with the phase and the							
	neutral to get:							
	a) same current, and different potential difference							
	b) different current but same potential difference							
	c) different current and different potential differences							
	d) same current and same potential differences							
СН	P # 14: MAGNETISM AND ELECTROMAGNETISM							
1.	The maximum magnetic force will act on a current carrying conductor in a magnetic field when it is							
	placed:							
	a) At 60° to field c) Parallel to the field							
	b) Perpendicular to the field d) At an angle of 45° to the field							
2.	One Tesla is equal to:							
	a) 1 weber/meter ² c) 2 weber ² /meter ²							
	b) weber/meter ² d) Newton/ampere							
3.	The motional e.m.f. induced in a coil is independent of:							
	(a) Change of flux (b) Number of turns (c) Time (d) Resistance							
4.	The practical application of phenomenon of mutual inductance is:							
	a) A.C generator b) transformer c) rectifier d) dynamo							

	a) An electric fieldb) A magnetic fieldc) Both electric andd) Neither electric	l d only nd magnetic fields	,	end parallel to a magne	atic field 'B': the			
0.	force experienced b		a current i is piac	eu parallei to a magne	tic field B, tile			
	a) BIL	b) BIL cosθ	c) Zero d)	Infinite				
7.	When a charged pa	article enters a uniform n	nagnetic field perpe	endicularly, its path is:	2			
	a) Spiral	b) Circular	c) Parabolic	d) Straight line	(U)			
8.		ue on a current carrying	-	netic field is maximum	when the angle			
	_	field and the plane of the		~ (10.			
_	a) zero°	b) 90°	c) 60°	d) 45°				
9.	Transformer works		\ .	N. C	,			
40	a) Ohms Law	b) Self induction	c) Mutual induction	on d) Gauss's law				
10.	A transformer is use	_	s) Valtage	d) Dowe				
11	a) Capacitance	b) Frequency	c) Voltage	d) Powe	Γ			
11.	In step-down transf a) $N_s > N_P$	b) N s< N _P	c) $N_S = N_P$	d) None of these	•			
12	•	on moving normal to a n	, ,		;			
12.	a) Straight line	b) Circular c) Oval	-					
13	SI unit of induction	· ·	u) sinusoid	o di				
	a) Tesla	b) Henry c) Watt	d) Weber					
14.	•	moving in the magnetic f		a resultant force:				
	a) Proportional to							
	b) In the direction of the field							
	c) In the direction perpendicular to its motion and field							
	d) None of these							
15.	The direction of ind	duced current is given by						
	a) Ohm's law	b) Lenz's law	c) Coulomb's law	d) Ampere's law				
		11.						
CH	CHP # 15: ELECTRICAL MEASURING INSTRUMENT							
1	A moving soil galva	namatar can ba canyart	ad into an ammatar	r by connecting as				
1.	a) Low resistance in	nometer can be convert	c) High resistance					
	b) Low resistance in		d) High resistance					
2.		unt on a galvanometer s		in paranei				
	a) Division	b) Ohm c) Volt	d) Henry					
3.		ole of a post office box is	•					
	a) Wheatstone Brid			ph Line d) Non	e of these			
4.	•	uracy of a potentiomete		,				
	a) A uniform wire	of a large length should	be used.					
	b) A uniform wire	of a small length should	be used.					
	c) Non uniform wire should be used.							
	d) None of these							
5.		ridge circuit we balance:						
	a) Resistance	b) Current	c) Voltage d)	All of these				

6.	I = (C/BNA) θ hence	to increase the	sensitivity of a	galvanome	eter, we mu	st decrease the value of:	
	a) θ	b) N	c) B	d) C			
7.	A device which con						
	a) Transformer	b) capa		c) galvan		d) Electric motor	
8.	The sensitivity of a	_		•	_		
	a) Magnetic field	=	a of coil	•	r of turns	d) all of them	
9.	A single device con	_			r is called:		
	a) VTVM	b) CRO	c) Potentiome		d) Mult		
10.	If the length of the	wire of potention	ometer is increa	sed the acc	curacy in th	e determination of null	
	point:					40	
	a) Increases	b) remains the	e same	c) Decrea	ases	d) becomes zero	
						V U0,	
CH	P # 16:	ELECTROM	AGNETIC WA	AVES AN	D ELECT	RONICS	
1	Which of the follow	ving are not elec	etromagnetic wa	WAS			
٠.	a) Light waves	b) X-rays	c) Heat waves		d) Sound w	avec	
2	, ,	•	•			velocity of electromagnetic	
۷.	waves in free space		e permeability o	i iree spaci	e, men me	velocity of electromagnetic	
	· ·		,		.0.0		
	a) $\varepsilon_{\rm o}\mu_{\rm o}$	b) ε_o / μ_o	c) ε _{o -} μ	ro c	$\sqrt{\epsilon o \mu o}$		
3.	Which waves are e	mitted from ant	enna?	2			
	a) Stationary waves	5	b) Longitudina	l waves			
	c) Transverse waves		d) Sound wave	d) Sound waves			
4.	Near absolute zero	temperature ex	ktrinsic semi-cor	iductors be	have like:		
	a) Conductors	b) Met	tals c) Insu	llators	d) N	Ione of these	
5. Germanium and silicon are the materials used as							
	a) Conductors		b) Semi-condu	ctors			
	c) Insulators		d) None of the	ese			
6.	The outer most orb	it of each atom	in silicon contai	ns			
	a) Four electrons	• • • • • • • • • • • • • • • • • • • •	b) Two electro	ons			
	c) Eight electrons		d) No electron	S			
7.	Which of the follow	ving is donor im	purity?				
	a) Arsenic	b) Indium	c) Germanium	C	d) Carbon		
8.	The charge carries	in P-type substa	nces are				
	a) Protons	b) Electrons	c) Hole	esd) Negat	ive ions		
9.	The charge carries	in N-type mater	ials are				
	a) Electrons b) Hole	!S	c) Protons	C	d) Positive i	ons	
10.	P-type materials ar	e obtained by a	dding germaniu	m with:			
	a) Tetravalent imp	urity atoms	b) Triv	alent impu	rity atoms		
	c) Pentavalent imp	urity atoms	d) Nor	ne of these			
11.	N-type materials ar	e obtained by d	oping intrinsic g	ermanium	with		
	a) Trivalent impurit	y atoms	b) Pentavalen	t impurity	atoms		
	c) Tetravalent impu	ırity atoms	d) None of the	ese			
12.	Hole is equivalent t	:0:					
	a) A neutral particle	e	b) A positive o	harge			
	c) A negative charg	е	d) An electron				

CHP # 17:				ADVENT	OF MODERN F	PHYSICS	
1.	vel	cording to spec ocity. Mass	cial theory of rela b) Length	tivity, which o	of the following qu	antities change with incr	ease in
2.	The	e wavelength o Mass of particl	of de-Broglie wave	b) Mass of	-		
3.	is:		•			r of gamma ray photos p	roduced
4.	Acc vel	ocity.	•	•		antities change with incr	ease in
5.	Spa a) b) c)	Mass ace and time in Absolute qua Relative qua Selection qua None of the a	ntities Intities	c) Time f relativity are	d) All of the a	Dove	
6.	a) b) c)	The laws of p The speed of	light in free space light is independe	ne in all inert e is universal	ial frames of refere constant eed of the observe		
7.	ln v a) b) c)	which of the fo Non-inertial f	llowing Newton's rame of reference rame of reference	e	on are valid		
8.	a) b) c)	Which moves Which is always	me of reference in a with some acce ays at rest on eart is with uniform vertee.	leration :h			
	a) b) c) d)	Which has ze Which is at re Which moves All of the abo	with uniform ve	ocity on eart	h		
	a) I	$E = \frac{1}{2} \text{ mv}^2$	•	c) E		d) $E = (m - m_o) c^2$ proportional to the	of the
	inc	ident light: Navelength		quency	c) Intensity	d) None of the	

12. Which of the following will be a good absorber of heat radiation?

b) A polished plate

d) A black jacket

a) A light-blue shirt

c) A white sweater

CH	P # 18: THE ATOMIC SPECTRA				
1.	Electron in hydrogen atom jumps from any higher orbit to 1 st orbit (lowest energy level). The set of lines emitted is called				
	a) Lyman series b) Balmer series c) Paschen series d) Brackett series				
2.	X-rays exhibit the phenomenon of:				
	a) Diffraction b) Interference c) Polarization d) All of the above				
3.	The spectral lines of hydrogen atom in the visible region were studied by				
	a) Lyman b) Balmer c) Paschen d) Brackett				
4.	The series of lines in the ultraviolet region of the hydrogen spectrum are called				
	a) Balmer series b) Brackett series				
	c) Paschen series d) Lyman series				
5.	Rutherford concluded that the nucleus, which is the central part of the atom, is				
	a) Positively charged b) Negatively charged				
	c) Electrically neutral d) None of these				
6.	Electron in hydrogen atom jumps from any higher orbit to 1st orbit (lowest energy level). The set of				
	lines emitted is called:				
	a) Lyman series b) Balmer series				
	c) Paschen series d) Brackett series				
7.	The Balmer series is obtained when an electron in hydrogen atom jumps from higher orbit to an				
	orbit where n is equal to				
	a) 1 b) 2 c) 3 d) 4				
8.	When an electron is excited from lower to a higher orbit, it will				
	a) Emit energy b) Absorb energy				
	c) Absorb as well as emit energy d) None of these				
9.	If an electron in an atom makes transition from higher to a lower orbit, it will.				
	a) Emit energy b) Absorb energy				
	c) Neither emit nor absorb energy d) Absorb as well as emit energy				
10.	The radius of the second orbit in hydrogen atom is				
	a) Greater than the first orbit b) Equal to the first orbit				
	c) Less than the first orbit d) None of these				
11.	Which of the following transition in hydrogen atom emits the photon of high frequency:				
	a) n = 1 to n = 2 b) n = 2 to n = 1				
	c) n = 2 to n = 6 d) n = 6 to n = 2				
٠					
СН	P # 19: THE ATOMIC NUCLEUS				
1	The mass number of a nucleus is the total number of				
•	a) Neutrons in the nucleus b) Protons in the nucleus				
	c) Nucleons in the nucleus d) None of these				
2	Alpha particle is similar to				
	a) Helium atom b) Helium neutron c) Helium nucleus d) None of these				
3. The mass number of a nucleus is the total number of					
	a) Neutrons in the nucleus b) Protons in the nucleus				
	c) Nucleons in the nucleus d) None of these				
4.	Protons and neutrons in the nucleus are together called				
	a) Mesons b) Phonons c) Photons d) Nucleons				

5. Which of the following was discovered by Chadwick in 1932? a) Electron B) b) **Neutron** c) Proton

d) Atom

6. Who determined the charge on the electron?

a) J.J. Thomson

b) Ampere

c) Chadwick

d) Milikan

7. Controlled fission chain reaction is maintained in:

a) Galaxies b) The sun

c) Cyclotron

d) Nuclear reactors

8. The source of energy in the sun and stars is mainly due to

a) Chemical reaction

b) Nuclear fusion

c) Nuclear fission

d) None of these

CHP # 20:

NUCLEAR RADIATIONS

1. In treating a localized cancerous tumor a narrow beam of:

a) Alpha rays from cobalt.

b) Beta rays from cobalt.

c) Gamma rays from cobalt.

d) Laser from cobalt.

2. A Geiger Muller counter contains:

a) Argon and Alcohol

b) alcohol only

c) ions

d) super cooled water vapors

3. If a small quantity of radioactive iodine $_{53}$ I^{131} is taken in food most of it is deposited in:

a) Kidneys

b) Brain

c) Thyroid glands

d) All glands